
Stream Framing Protocol

Philip Munts
Munts Technologies

Revision 1.1, 1 November 2016

Rationale

Stream communication channels, such as serial ports and TCP connections, deliver individual
bytes of data. Message boundaries are not necessarily preserved; a sender may write a 20-
byte message to the stream while the receiver may read from 1 to 20 bytes at a time from the
other end of the stream. When data must be delivered in indivisible messages, a framing
protocol such as this Stream Framing Protocol must be used.

Delimiters

The following byte values are used for delimiting data frames:

● STX (ASCII 2 decimal, 0x02 hexadecimal) Start of Text

● ETX (ASCII 3 decimal, 0x03 hexadecimal) End of Text

● DLE (ASCII 16 decimal, 0x10 hexadecimal) Data Link Escape

Framing Protocol

1. Each frame shall begin with the two byte sequence DLE STX.

2. Any number (including zero) of payload data bytes may follow.

3. An extra DLE byte shall be injected (“byte stuffed”) before each 0x10 byte present in the

payload data.

4. After the payload data bytes, two bytes of CRC16-CCITT 0x1D0F checksum shall be
appended, in network byte order (most significant byte first). The checksum shall be
calculated from the original payload data bytes (i.e. before byte stuffing).

5. An extra DLE byte shall be injected before each 0x10 byte present in the checksum.

6. The frame shall end with the two byte sequence DLE ETX.

Buffer Size

When encoding a message of N payload data bytes, the destination frame buffer size must be

2*N+8 bytes, worst case (2*N if all payload data bytes are 0x10, +4 for the DLE STX and

DLE ETX delimiters, and +4 if both checksum bytes are 0x10).

Stream Framing Protocol Revision 1.1, 12 October 2016 Page 1 of 2

Checksum Algorithm

CRC16 algorithms are, in general, incompletely specified. This Stream Framing Protocol
shall use the following reference implementation (or its equivalent) for CRC16-CCITT
0x1D0F:

// The following CRC16-CCITT subroutine came from:
// http://stackoverflow.com/questions/10564491/function-to-calculate-
a-crc16-checksum

uint16_t crc16(const uint8_t* data_p, uint8_t length){
 uint8_t x;
 uint16_t crc = 0x1D0F;

 while (length--){
 x = crc >> 8 ^ *data_p++;
 x ^= x>>4;
 crc = (crc << 8) ^ ((uint16_t)(x << 12)) ^ ((uint16_t)(x
<<5)) ^ ((uint16_t)x);
 }
 return crc;
}

The checksum for an empty frame (no payload data bytes) must be 0x1D0F.

The checksum for a message consisting of the nine ASCII bytes “123456789” must be

0xE5CC.

See https://www.lammertbies.nl/comm/info/crc-calculation.html for an online CRC calculator
and more information.

Credits

This stream framing protocol is derived from that defined at:

https://github.com/GraemeWilson/Arduino-Python-Framing-CRC16

The only difference is that this stream framing protocol uses a more standard and precisely
defined CRC-16 algorithm.

Stream Framing Protocol Revision 1.1, 12 October 2016 Page 2 of 2

https://www.lammertbies.nl/comm/info/crc-calculation.html
https://github.com/GraemeWilson/Arduino-Python-Framing-CRC16

	Stream Framing Protocol
	Rationale
	Delimiters
	Framing Protocol
	Buffer Size
	Checksum Algorithm
	Credits

