
MuntsOS Embedded Linux

Application Note #18:
.Net on MuntsOS

Revision 1
18 January 2024

by Philip Munts
dba Munts Technologies

http://tech.munts.com

MuntsOS Application Note #18 -- .Net on MuntsOS Page 1 of 5

Introduction

By installing the dotnet extension package, you can enable MuntsOS Embedded Linux
(hererafter just MuntsOS) to run .Net programs.

Application Note #8 presents a worked example using dotnet and other command line
tools to create a .Net Core C# console application (hereafter just .Net application) project,
build the executables, transfer the executables to a MuntsOS target computer, and run the
main program assembly on the target computer.

This application note provides a more detailed explanation of how MuntsOS supports .Net.

.Net Project Templates

MuntsOS Application Note #18 -- .Net on MuntsOS Page 2 of 5

http://git.munts.com/muntsos/doc/AppNote8-Flash-LED-C%23.pdf

.Net Application Deliverables

There are several ways to package the deliverables for a .Net application. The following are
applicable to MuntsOS.

dotnet publish

This is the canonical command to build a .Net application from the command line.

Running dotnet publish in the project directory creates a release subdirectory named
bin/Release/net9.0/publish which contains the application executables.

Copy the contents of bin/Release/net9.0/publish to the target computer and run the
application with dotnet, as the following commands excerpted from Application Note #8
illustrates:

scp bin/Release/net9.0/publish/* root@snoopy:.
ssh root@snoopy
dotnet blinky.dll

The minimal set of executables in bin/Release/net9.0/publish contains all of the
.dll files (one of which is the main program assembly) plus the one
.runtimeconfig.json file. You do not need to transfer either of the .pdb and
.deps.json files to the target computer, but it does no harm to include them either, and
usually simplifies the copy operation.

The executables written to bin/Release/net9.0/publish are architecture
independent, meaning they can (in principle) be run as-is on Windows, Linux or macOS
computers of various and sundry instruct set architectures.

In reality, few if any applications intended for MuntsOS will be able to run on Windows or
macOS computers, as they will necessarily lack the Linux shared library libsimpleio.so,
but they often will be able to run on Linux computers with different instruction sets, such as
64-bit Intel x86-64 and 64-bit ARMv8 or even 32-bit ARMv7.

If you open a .Net program project with Microsoft Visual Studio on Windows, you can do the
equivalent of dotnet publish by first setting the project configuration to Release and then
doing Build → Publish Selection from the menu bar and working through the prompts that
follow.

Tip: You can also just build the solution with dotnet build at the command line or F6 aka
Build → Build Solution in Visual Studio. Both of these operations place the executables in
bin/Release/net9.0 instead of bin/Release/net9.0/publish. F6 is much easier
than wading through the dialogs of Build → Publish Selection.

MuntsOS Application Note #18 -- .Net on MuntsOS Page 3 of 5

dotnet pack

Running dotnet pack in the project directory results in writing a .nupkg file to the
subdirectory bin/Release. The .nupkg file is just a renamed .zip file containing the
minimal set (i.e. excluding the .pdb and .deps.json files) of architecture independent
executables plus some rather opaque metadata files. Packing an application into a .nupkg
file can reduce its total amount of storage space and make it more convenient to move
around than a group of files, especially if you are using a lot of library asssemblies.

The equivalent of dotnet pack in Visual Studio is just Build → Pack <appname>.

The MuntsOS root file system contains a program named nupkg that will unpack and install
the .Net application executables contained inside a .nupkg file, using a command similar to
the following:

nupkg blinky.1.0.0.nupkg

This command creates the directory /usr/local/lib/blinky and installs the architecture
independent application executable files there. It also creates a one line shell script for
running the application /usr/local/bin/blinky with contents similar to the following:

exec dotnet /usr/local/lib/blinky/blinky.dll "$@"

If you move the .nupkg file to /boot/packages on the target computer, it will be saved in
permanent storage and installed automatically at boot time:

dotnet pack
scp bin/Release/blinky.1.0.0.nupkg root@snoopy:.
ssh root@snoopy
mount -orw /boot
mv blinky.1.0.0.nupkg /boot/packages
umount /boot

If you create your .Net application project using the template from libsimpleio-templates, the
project file will contain some logic to automatically pick up a start script to be installed into
/etc/rc.d on the target computer at boot time and executed automatically whenever the
target computer reboots. The start script must be placed in the project directory, and named
S00<appname>. Continuing with the blinky example, run the following command in the
project directory to create a start script: echo "/usr/local/bin/blinky" >S00blinky

If you need to execute multiple programs at boot time, you can edit the project configuration
file (e.g. blinky.csproj) for each program and change S00 to S01, S02, S03, etc. to
control the execution order, since start scripts in /etc/rc.d are executed in alphabetical
order. Each program started by a script in /etc/rc.d must run to completion and exit or
detach itself from foreground execution using LINUX_detach() or its equivalent to avoid
blocking its successor(s).

MuntsOS Application Note #18 -- .Net on MuntsOS Page 4 of 5

dotnet publish -r linux-arm64 -p:PublishSingleFile=true --self-contained true

A single file application must be built for a particular architecture,linux-arm64 (current
64-bit targets) or linux-arm (obsolete 32-bit targets) for MuntsOS, because the deliverable
is just a binary program file for the target computer.

A self-contained .Net single file application contains the main program assembly, library
assemblies, and the entire .Net runtime within the program file.

Pros:

● You never have to worry whether the .Net runtime extension installed on the MuntsOS
target computer is too old or installed at all.

Cons:

● The application program file will be very large--over 78 MB at time of writing.

● You must install the libicu extension (another 36 MB) to the target computer or define the
following environment variable in /etc/environment:

DOTNET_SYSTEM_GLOBALIZATION_INVARIANT=true

dotnet publish -r linux-arm64 -p:PublishSingleFile=true --self-contained false

A framework-dependent .Net single file application contains only the main program
assembly and library assemblies.

Pros:

● The deliverable program file will be much smaller.

● DOTNET_SYSTEM_GLOBALIZATION_INVARIANT is set by the .Net runtime extension
package.

Cons:

● The target computer must have a recent enough .Net runtime extension package installed
before you can run your program.

The recommended types of deliverables for running a .Net program on MuntsOS are a
.nupkg file or a framework dependent single file.

The Makefile included in the project template from libsimpleio-templates produces a
framework dependent single file application by default. You can edit Makefile to change
default: coreapp_mk_single to default: coreapp_mk_nupkg to produce a
.nupkg file instead.

MuntsOS Application Note #18 -- .Net on MuntsOS Page 5 of 5

