
MuntsOS

Application Note #25:
RabbitMQ Enterprise Message

Broker Client Programs

Revision 1
31 December 2025

by Philip Munts
dba Munts Technologies

http://tech.munts.com

MuntsOS Application Note #25 -- RabbitMQ Client Programs Page 1 of 6

Introduction

This application note describes some examples of and best practices for MuntsOS
Embedded Linux (hereafter just MuntsOS) target programs that send messages to and/or
receive messages from a RabbitMQ Enterprise Message Broker (hereafter just RabbitMQ),
which is often used in backend systems to implement an information bus architecture.

An information bus architecture works well for IoT (Internet of Things) networks, with each IoT
end node running software that pushes messages to and/or pulls messages from the
information bus.

Broker

A RabbitMQ Broker is an instance of RabbitMQ installed, configured, and running on a
server computer accessible from a MuntsOS target computer. Installation and configuration
of RabbitMQ are beyond the scope of this document. A broker, per se, is invisible to client
programs.

Virtual Host

A RabbitMQ Virtual Host (hereafter, vhost) is analogous to a web server virtual host. Just as
tech.munts.com and repo.munts.com are web servers with separate name spaces that run on
the same piece of hardware, each vhost creates a distinct name space at the connection
level.

Every broker has an anonymous default vhost sometimes referred to as "/".

Named vhosts can be managed (created and destroyed) using the rabbitmqctl command.

Each vhost its own URI of the form:

scheme://user:password@host[:port][/[vhost]]

where:

scheme can be either amqp (unencrypted) or amqps (encrypted).

user and password have default values guest and guest.

host is an IP address or domain name

port is a TCP port number. If omitted, one of the default port numbers is selected: 5672
(unencrypted) or 5671 (encrypted).

vhost is the name of a vhost. If omitted, with or without the trailing /, the anonymous default
vhost is selected.

A client program may connect to more than one vhost, each with a distinct URI and a
separate connection object.

MuntsOS Application Note #25 -- RabbitMQ Client Programs Page 2 of 6

https://www.rabbitmq.com/
https://www.rabbitmq.com/docs/uri-spec
https://repo.munts.com/
https://tech.munts.com/
https://www.rabbitmq.com/docs/vhosts
https://www.rabbitmq.com/docs/configure
https://en.wikipedia.org/wiki/Internet_of_things
https://dl.acm.org/doi/epdf/10.1145/173668.168624
https://en.wikipedia.org/wiki/Front_end_and_back_end

Exchange

A RabbitMQ Exchange (hereafter, exchange) is a named entity inside a vhost name space to
which a client program can write/publish/push/send messages, each of can include a routing
key string. The exchange writes each message to one or more queues. There are many
exchange types, each with different forwarding policies. The most common and useful types
are:

A fanout exchange writes every incoming message to every queue bound to the exchange.
The routing key is ignored.

A direct exchange writes incoming messages to every queue bound to the exchange with a
matching (exactly) routing key.

A topic exchange also writes incoming message to every queue bound to the exchange with
a matching routing key. However, each queue's routing key is a rudimentary regular
expression consisting of tokens separated by periods, e.g. House.Bedroom.Table. Two
special wildcard tokens are defined: * matches exactly one token and # matches zero or
more tokens.

So, a topic exchange will write an incoming message with the routing key
House.Bedroom.Table to queues created with routing keys House.Bedroom.Table,
House.Bedroom.*, House.*.Table, House.*.*, *.Bedroom.* , *.*.Table and
House.#.

Every vhost will contain default exchanges named amq.fanout, amq.direct, and
amq.topic among others.

Queue

A RabbitMQ Queue (hereafter, queue) is a FIFO (First In First Out) data structure subsystem
inside a vhost name space. RabbitMQ queues are always output queues. Only exchanges
can write to queues and only client programs can read from queues. A queue must be bound
to an exchange before a client program can read from it.

In the context of this Application Note, the ephemeral queue is most useful. An ephemeral
queue must be named (preferably with a name generated by the broker or a UUID string),
created, and bound with a routing key to an exchange by a client program. Every ephermal
queue must be marked as exclusive, which means it is private to the client program that
created it and that it will be deleted when the client program closes its connection to the
vhost.

MuntsOS Application Note #25 -- RabbitMQ Client Programs Page 3 of 6

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://www.rabbitmq.com/docs/queues#names
https://www.rabbitmq.com/docs/queues
https://www.rabbitmq.com/docs/exchanges

Example Client aka End Node Programs

The Linux Simple I/O Library contains the following Ada and C# example RabbitMQ client
aka end node programs, which can be cross-compiled to run on MuntsOS target computers:

● test_rabbitmq_consume.adb

● test_rabbitmq_produce.adb

● test_rabbitmq_consume

● test_rabbitmq_produce

Each of these example programs obtain their runtime configuration from the following
environment variables:

● RABBITMQ_SCHEME (default amqp)

● RABBITMQ_USER (default guest)

● RABBITMQ_PASS (default guest)

● RABBITMQ_SERVER (default localhost)

● RABBITMQ_PORT (default 5672)

● RABBITMQ_VHOST (default /)

● RABBITMQ_EXCHANGE (default amq.topic)

● RABBITMQ_ROUTING (default empty string "")

The minimum set of environment variables that you will need to define in the file
/etc/environment on your MuntsOS target computer is:

● RABBITMQ_USER

● RABBITMQ_PASS

● RABBITMQ_SERVER

● RABBITMQ_VHOST

Additionally, you may need to define RABBITMQ_ROUTING to set the RabbitMQ routing key
(e.g. topic) if the client program does not generate a custom routing key on the fly.

MuntsOS Application Note #25 -- RabbitMQ Client Programs Page 4 of 6

https://www.rabbitmq.com/tutorials/tutorial-five-dotnet
https://github.com/pmunts/libsimpleio/tree/master/csharp/programs/simpleio/test_rabbitmq_produce
https://github.com/pmunts/libsimpleio/tree/master/csharp/programs/simpleio/test_rabbitmq_consume
https://github.com/pmunts/libsimpleio/blob/master/ada/programs/test_rabbitmq_produce.adb
https://github.com/pmunts/libsimpleio/blob/master/ada/programs/test_rabbitmq_consume.adb
https://github.com/pmunts/libsimpleio

Case Study #1 -- LoRa Sensor Network

Imagine some Raspberry Pi microcomputers running MuntsOS Embedded Linux are
members of a LoRa sensor network using the Amateur Radio LoRa P2P Network Flavor #1
Protocol.

One Raspberry Pi, with radio node ID N7AHL-1, is a data aggregator node running the .Net
Core program wioe5_ham1_rabbitmq. It listens for incoming radio messages containing
sensor data samples. For each sensor data radio message received, it extracts the sensor
data, adds a timestamp, adds some radio network metadata, and forwards the result with a
routing key like N7AHL-1.N7AHL-2.Sensor.Temperature to the amqp.topic exchange
in a RabbitMQ vhost.

Another Raspberry Pi microcomputer, with radio node ID N7AHL-2, and without Internet
access, is a sensor node running the Python3 program wioe5_ham1_thermometer.py. It
periodically measures the temperature of a Type K thermocouple and transmits a radio
message containing the measurement to N7AHL-1.

Elsewhere, another computer named logger runs a RabbitMQ client program connected to
the same RabbitMQ vhost as N7AHL-1. The client program on logger has created an
ephemeral queue and bound it to the ampq.topic exchange. It drains temperature sample
messages from the ephemeral queue and stores the time stamped temperature samples to a
database server.

logger will do different things depending on what routing key it used to connect to the
RabbitMQ vhost:

N7AHL-1.N7AHL-2.Sensor.Temperature: logger stores temperature samples
received by N7AHL-1 from N7AHL-2.

N7AHL-1.*.Sensor.Temperature: logger stores temperature samples
received by N7AHL-1 from any sensor
node that is a member of the same
radio network.

SA7CHS-1.*.Sensor.Temperature: logger stores temperature samples
from another completely separate radio
network in Sweden.

..Sensor.Temperature: logger stores temperatue samples
from any sensor node anywhere in the
world.

..Sensor.*: logger stores all kinds of sensor data
(at least what it can parse) from any
sensor node anywhere in the world.

MuntsOS Application Note #25 -- RabbitMQ Client Programs Page 5 of 6

https://github.com/pmunts/muntsos/blob/master/examples/python3/wioe5/wioe5_ham1_thermometer.py
https://github.com/pmunts/muntsos/tree/master/examples/csharp/programs/wioe5/wioe5_ham1_rabbitmq
https://www.semtech.com/lora/what-is-lora
https://git.munts.com/libsimpleio/doc/WioE5LoRaP2P.pdf
https://git.munts.com/libsimpleio/doc/WioE5LoRaP2P.pdf

The last two routing keys probably make the most sense for logger to use. After the
temperature samples have been stored in the database, an you can perform database
queries to calculate average temperatures, produce reports, etc.

Now suppose you want an eye candy real time display (e.g. a flat screen TV on a wall) driven
by a computer named monitor, of the most recent temperatures measured by each of the
sensor nodes. All you would have to do is write another RabbitMQ client program, perhaps
a .Net WPF application, that connects to the same vhost as logger and creates and binds
an output queue using the *.*.Sensor.Temperature routing key.

Neither logger nor monitor are aware of each other and neither affects the other unless
the sheer number of sensor nodes, aggregator nodes, and client programs is large enough to
overwhelm the hardware the broker is running on.

MuntsOS Application Note #25 -- RabbitMQ Client Programs Page 6 of 6

